The May-wigner Stability Theorem for Connected Matrices

نویسندگان

  • HAROLD M. HASTINGS
  • M. R. Gardner
  • H. M. HASTINGS
چکیده

MAY-WIGNER STABILITY THEOREM. Let B be an n x n matrix with nC (0 < C < 1) randomly located nonzero entries, each chosen independently from a symmetric distribution with variance a. Let A = B I, and let P(a, n, C) be the probability that the corresponding differential system (I) has a stable equilibrium at 0. Let e > 0. Then P(a, n, Q —• 1 as n —• °° provided anC < 1 e; conversely, P(a, nt C) —• 0 as n —• °° for ct nC > 1 + e.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Mechanics and Random Matrices

Statistical Mechanics and Random Matrices 3 1. Introduction 6 2. Motivations 7 3. The different scales; typical results 12 Lecture 1. Wigner matrices and moments estimates 15 1. Wigner's theorem 16 2. Words in several independent Wigner matrices 23 3. Estimates on the largest eigenvalue of Wigner matrices 25 Lecture 2. Gaussian Wigner matrices and Fredholm determinants 27 1. Joint law of the ei...

متن کامل

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices

The purpose of this note is to establish a Central Limit Theorem for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on the correct aymptotics of the variance of the eigenvalue counting function of GUE matrices due to Gustavsson, and its extension to large families of Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by ...

متن کامل

Eigenvalue variance bounds for Wigner and covariance random matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and re...

متن کامل

A comment on the Wigner - Dyson - Mehta bulk universality conjecture for Wigner matrices ∗

Recently we proved [3, 4, 6, 7, 9, 10, 11] that the eigenvalue correlation functions of a general class of random matrices converge, weakly with respect to the energy, to the corresponding ones of Gaussian matrices. Tao and Vu [15] gave a proof that for the special case of Hermitian Wigner matrices the convergence can be strengthened to vague convergence at any fixed energy in the bulk. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007